题目内容

【题目】如图,已知⊙O是以BC为直径的△ABC的外接圆,OP∥AC,且与BC的垂线交于点P,OP交AB于点D,BC、PA的延长线交于点E.
(1)求证:PA是⊙O的切线;
(2)若sinE= ,PA=6,求AC的长.

【答案】
(1)证明:连接OA,如图,

∵AC∥OP,

∴∠ACO=∠POB,∠CAO=∠POA,

又∵OA=OC,

∴∠ACO=∠CAO,

∴∠POA=∠POB,

在△PAO和△PBO中,

∴△PAO≌△PBO(SAS),

∴∠PAO=∠PBO,

又∵PB⊥BC,

∴∠PBO=90°,

∴∠PAO=90°,

∴OA⊥PE,

∴PA是⊙O的切线


(2)解:∵△PAO≌△PBO,

∴PB=PA=6,

在Rt△PBE中,∵sinE= =

= ,解得PE=10,

∴AE=PE﹣PA=4,

在Rt△AOE中,sinE= =

设OA=3t,则OE=5t,

∴AE= =4t,

∴4t=4,解得t=1,

∴OA=3,

在Rt△PBO中,∵OB=3,PB=6,

∴OP= =3

∵AC∥OP,

∴△EAC∽△EPO,

= ,即 =

∴AC=


【解析】(1)先利用平行线的性质得到∠ACO=∠POB,∠CAO=∠POA,加上∠ACO=∠CAO,则∠POA=∠POB,于是可根据“SAS”判断△PAO≌△PBO,则∠PAO=∠PBO=90°,然后根据切线的判定定理即可得到PA是⊙O的切线;(2)先由△PAO≌△PBO得PB=PA=6,在Rt△PBE中,利用正弦的定义可计算PE=10,则AE=PE﹣PA=4,再在Rt△AOE中,由sinE= = ,可设OA=3t,则OE=5t,由勾股定理得到AE=4t,则4t=4,解得t=1,所以OA=3;接着在Rt△PBO中利用勾股定理计算出OP=3 ,然后证明△EAC∽△EPO,再利用相似比可计算出AC.
【考点精析】根据题目的已知条件,利用切线的判定定理的相关知识可以得到问题的答案,需要掌握切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网