题目内容
【题目】某服装厂生产某品牌的T恤衫成本是每件10元。根据市场调查,以单价13元批发给经销,商销商愿意经销5000件,并且表示每降价0.1元,愿意多经销500件。服装厂决定批发价在不低于11.4元的前提下,将批发价下降0.1x元.
(1)求销售量y与x的关系,并求出x的取值范围;
(2)不考虑其他因素,请问厂家批发单价是多少时所获利润W可以最大?最大利润为多少?
【答案】(1),;(2)批发单价是12元时所获利润W可以最大,最大利润为20000元.
【解析】
(1)根据销售量=原销量+多经销的销量即可列出函数关系式,根据批发价在不低于11.4元,可得x的取值范围;
(2)根据利润W=销量×单利润即可列出函数关系式,将函数化为顶点式,根据顶点式求最值即可.
解:(1)根据题意:,
因为批发价在不低于11.4元,所以,解得,
又,所以.
所以销售量y与x的关系为:,x的取值范围为;
(2)根据题意:
因为-50<0,所以当x=10时(在x取值范围之内),利润最大为20000元.
因为当x=10时,13-0.1x=12元
所以当批发单价是12元时所获利润W可以最大,最大利润为20000元.
【题目】某校开展“传统文化”知识竞赛,已知该校七年级男生和女生各有学生200人,从中各随机抽取20名学生进行抽样调查,获得了他们知识竞赛成绩(满分100分),并进行整理,得到下面部分信息.
男生:74 97 96 89 98 74 65 76 72 78 99 72 97 76 99 74 99 73 98 74
女生:76 87 93 65 78 94 89 68 95 54 89 87 89 89 77 94 86 87 92 91
成绩 | 50≤x≤59 | 60≤x≤69 | 70≤x≤79 | 80≤x≤89 | 90≤x≤100 |
男生 | 0 | 1 | 10 | 1 | 8 |
女生 | 1 | 2 | a | 8 | 6 |
平均数、中位数、众数、方差如表所示:
成绩 | 平均数 | 中位数 | 众数 | 方差 |
男生 | 84 | 77 | 74 | 145.4 |
女生 | 84 | b | 89 | 115.6 |
根据以上信息,回答下列问题:
(1)a= ,b= ;
(2)你认为七年级学生中,男生还是女生的总体成绩较好,为什么?(至少从两个不同的角度说明)
(3)若在此次竞赛中,该校七年级学生中有四人取得100分的好成绩,且恰好是两个男生两个女生.现从这四人中随机抽取两人参加市里的竞赛,求这两人恰好是一男一女的概率.