题目内容
【题目】如图,在⊙O的内接三角形ABC中,,,过C作AB的垂线l交⊙O于另一点D,垂足为E.设P是上异于A,C的一个动点,射线AP交l于点F,连接PC与PD,PD交AB于点G.
(1)求证:;
(2)若, ,求PD的长.
【答案】(1)证明见解析;(2).
【解析】
(1)证明相似,思路很常规,就是两个角相等或边长成比例.因为题中由圆周角易知一对相等的角,那么另一对角相等就是我们需要努力的方向,因为涉及圆,倾向于找接近圆的角∠DPF,利用补角在圆内作等量代换,等弧对等角等知识易得∠DPF=∠APC,则结论易证.
(2)求PD的长,且此线段在上问已证相似的△PDF中,很明显用相似得成比例,再将其他边代入是应有的思路.利用已知条件易得其他边长,则PD可求.
解:(1)∵四边形APCB内接于圆O,
∴∠FPC=∠B.
又∵∠B=∠ACE=90°-∠BCE,∠ACE=∠APD,
∴∠APD=∠FPC,∠APD+∠DPC=∠FPC+∠DPC,即∠APC=∠FPD,
又∵∠PAC=∠PDC,
∴△PAC∽△PDF;
(2)如图1,连接PO,
则由 ,,有PO⊥AB,且∠PAB=45°,△APO、△AEF都为等腰直角三角形.在Rt△ABC中,
∵AC=2BC,
∴AB2=BC2+AC2=5BC2,
∵AB=5,
∴BC= ,
∴AC=2,
∴CE=ACsin∠BAC=AC=2=2,
AE=ACcos∠BAC=AC=2=4,
∵△AEF为等腰直角三角形,
∴EF=AE=4,
∴FD=FC+CD=(EF-CE)+2CE=EF+CE=4+2=6.
∵△APO为等腰直角三角形,AO=AB=,
∴AP=.
∵△PDF∽△PAC,
∴=,
∴=,
∴PD=.
【题目】为了庆祝“五四”青年节,我市某中学举行了书法比赛,赛后随机抽查部分参赛同学成绩(满分为100分),并制作成图表如下
分数段 | 频数 | 频率 |
60≤x<70 | 30 | 0.15 |
70≤x<80 | m | 0.45 |
80≤x<90 | 60 | n |
90≤x≤100 | 20 | 0.1 |
请根据以上图表提供的信息,解答下列问题:
(1)这次随机抽查了 名学生;表中的数m= ,n= ;
(2)请在图中补全频数分布直方图;
(3)若绘制扇形统计图,分数段60≤x<70所对应扇形的圆心角的度数是 ;
(4)全校共有600名学生参加比赛,估计该校成绩不低于80分的学生有多少人?