题目内容

【题目】如图,已知△ABC是等边三角形,点D、F分别在线段BC、AB上,∠EFB=60°,DC=EF.

(1)求证:四边形EFCD是平行四边形;

(2)若BF=EF,求证:AE=AD.

【答案】(1)证明见解析;(2)证明见解析.

【解析】

试题分析:(1)由△ABC是等边三角形得到∠B=60°,而∠EFB=60°,由此可以证明EF∥DC,而DC=EF,然后即可证明四边形EFCD是平行四边形;

(2)如图,连接BE,由BF=EF,∠EFB=60°可以推出△EFB是等边三角形,然后得到EB=EF,∠EBF=60°,而DC=EF,由此得到EB=DC,又

△ABC是等边三角形,所以得到∠ACB=60°,AB=AC,然后即可证明△AEB≌△ADC,利用全等三角形的性质就证明AE=AD.

试题解析:(1)∵△ABC是等边三角形,

∴∠ABC=60°,

∵∠EFB=60°,

∴∠ABC=∠EFB,

∴EF∥DC(内错角相等,两直线平行),

∵DC=EF,

∴四边形EFCD是平行四边形;

(2)连接BE

∵BF=EF,∠EFB=60°,

∴△EFB是等边三角形,

∴EB=EF,∠EBF=60°

∵DC=EF,

∴EB=DC,

∵△ABC是等边三角形,

∴∠ACB=60°,AB=AC,

∴∠EBF=∠ACB,

∴△AEB≌△ADC,

∴AE=AD.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网