题目内容

从1,2,3,…,2004中任选K-1个数中,一定可以找到能构成三角形边长的三个数(这里要求三角形三边长互不相等),试问满足条件的K的最小值是多少?
为使K达到最大,可选加入之数等于已得数组中最大的两数之和,这样得:
1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597 ①
共16个数,对符合上述条件的任数组,a1,a2…an显然总有ai大于等于①中的第i个数,
所以n≤16≤K-1,从而知K的最小值为17.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网