题目内容
【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①b2﹣4ac>0; ②abc>0; ③8a+c<0; ④9a+3b+c>0.其中,正确结论的个数( )
A. 1B. 2C. 3D. 4
【答案】B
【解析】
由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
①由图知:抛物线与x轴有两个不同的交点,则△=b2﹣4ac>0,故①正确;
②抛物线开口向上,得:a>0;对称轴为x1,则b=﹣2a,故b<0;
抛物线交y轴于负半轴,得:c<0;
所以abc>0;故②正确;
③观察图象得当x=﹣2时,y>0,即4a﹣2b+c>0.
∵b=﹣2a,∴4a+4a+c>0,即8a+c>0,故③错误;
④根据抛物线的对称轴方程可知:(﹣1,0)关于对称轴的对称点是(3,0);
当x=﹣1时,y<0,所以当x=3时,也有y<0,即9a+3b+c<0;故④错误;
综上所述:正确的说法是:①②.
故选B.
练习册系列答案
相关题目