题目内容

【题目】我们知道:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧;平分弧的直径垂直平分这条弧所对的弦.你可以利用这一结论解决问题:
如图,点P在以MN(南北方向)为直径的⊙O上,MN=8,PQ⊥MN交⊙O于点Q,垂足为H,PQ≠MN,弦PC、PD分别交MN于点E、F,且PE=PF.

(1)比较 的大小;
(2)若OH=2 ,求证:OP∥CD;
(3)设直线MN、CD相交所成的锐角为α,试确定cosα= 时,点P的位置.

【答案】
(1)解:∵PE=PF,PH⊥EF,

∴PH平分∠FPE,

∴∠DPQ=∠CPQ,

=


(2)证明:连结CD、OP、OQ,OQ交CD于B,如图,

∵OH=2 ,OP=4,

∴PH= =2

∴△OPH为等腰直角三角形,

∴∠OPQ=45°,

而OP=OQ,

∴△OPQ为等腰直角三角形,

∴∠POQ=90°,

∴OP⊥OQ,

=

∴OQ⊥CD,

∴OP∥CD


(3)解:直线CD交MN于A,如图,

∵cosα=

∴∠α=30°,即直线MN、CD相交所成的锐角为30°,

而OB⊥CD,

∴∠AOB=60°,

∵OH⊥PQ,

∴∠POH=60°,

在Rt△POH中,∵sin∠POH=

∴PH=4sin60°=2

即点P到MN的距离为2


【解析】(1)根据等腰三角形的性质,由PE=PF,PH⊥EF可判断PH平分∠FPE,然后根据圆中角定理得到 = ;(2)连结CD、OP、OQ,OQ交CD于B,如图,先计算出PH=2 ,则可判断△OPH为等腰直角三角形得到∠OPQ=45°,再判断△OPQ为等腰直角三角形得到∠POQ=90°,然后根据垂径的推理由 = 得到OQ⊥CD,则根据平行线的判定方法得OP∥CD;(3)直线CD交MN于A,如图,由特殊角的三角函数值得∠α=30°,即直线MN、CD相交所成的锐角为30°,利用OB⊥CD得到∠AOB=60°,则∠POH=60°,然后在Rt△POH中利用正弦的定义计算出PH即可.本题考查了圆的综合题:熟练掌握垂径定理及其推理、圆周角定理;能够灵活应用等腰直角三角形的性质和三角函数进行几何计算.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网