题目内容
【题目】如图,在Rt△ABC的场地上,∠B=90°,AB=BC,∠CAB的平分线AE交BC于点E.甲、乙两人同时从A处出发,以相同的速度分别沿AC和A→B→E线路前进,甲的目的地为C,乙的目的地为E.请你判断一下,甲、乙两人谁先到达各自的目的地?并说明理由.
【答案】同时到达
【解析】试题分析:
由题意可知:这里是要比较AB+BE与AC的大小关系.
如图,过点E作EF⊥AC于点F,则由角平分线的性质可得BE=EF,证△EFC是等腰直角三角形可得EF=EC,从而可得BE=FC;再证△ABE≌△AFE可得AB=AF,从而可得AB+BE=AC,说明甲、乙二人会同时达到目的地.
试题解析:
甲、乙会同时到达目的地.理由如下:
过点E作EF⊥AC于点F,∵AE平分∠CAB,∠B=90°,
∴EF=EB,∠CAE=∠BAE,
∵AB=BC,∠B=90°,
∴∠C=.
∵EF⊥AC,
∴∠EFC=90°,
∴∠CEF=90°-∠C=45°=∠C,
∴EF=CF.
∴BE=CF,
在△AEF和△AEB中, ,
∴△AEF≌△AEB,
∴AF=AB,
∴AB+BE=AF+CF=AC,故甲、乙同时到达目的地.
练习册系列答案
相关题目