题目内容

【题目】如图1,E为矩形ABCD边AD上的一点,点P从点B沿折线BE﹣ED﹣DC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是2cm/s.若P、Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t的函数关系图象如图2,则下列结论错误的是(  )

A.AE=12cm
B.sin∠EBC=
C.当0<t≤8时,y=t2
D.当t=9s时,△PBQ是等腰三角形

【答案】D
【解析】A、分析函数图象可知,BC=16cm,ED=4cm,故AE=AD﹣ED=BC﹣ED=16﹣4=12cm,故①正确;
B、如答图1所示,连接EC,过点E作EF⊥BC于点F,
由函数图象可知,BC=BE=16cm,ED=4cm,则BF=12cm,
由勾股定理得,EF=4
∴sin∠EBC==,故②正确;
C、如答图2所示,过点P作PG⊥BQ于点G,
∵BQ=BP=2t,
∴y=SBPQ=BQPG=BQBPsin∠EBC=×2t2t=t2
故③正确;
D、当t=9s时,点Q与点C重合,点P运动到ED的中点,设为N,如答图3所示,连接NB,NC.
此时AN=14,ND=2,由勾股定理求得:NB=,NC=
∵BC=16,
∴△BCN不是等腰三角形,即此时△PBQ不是等腰三角形.
故④错误;
故选:D.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网