题目内容

【题目】阅读材料:已知,如图(1),在面积为S△ABC中, BC=a,AC=b, AB=c,内切圆O的半径为r连接OAOBOC△ABC被划分为三个小三角形.

(1)类比推理:若面积为S的四边形ABCD存在内切圆(与各边都相切的圆),如图(2),各边长分别为AB=aBC=bCD=cAD=d,求四边形的内切圆半径r

(2)理解应用:如图(3),在等腰梯形ABCD中,AB∥DCAB=21,CD=11,AD=13,⊙O1与⊙O2分别为△ABD与△BCD的内切圆,设它们的半径分别为r1r2,求的值.

【答案】(12.

【解析】试题分析:(1)如图,连接OAOBOCOD,则AOBBOCCODDOA都是以点O为顶点、高都是r的三角形,根据即可求得四边形的内切圆半径r.

2)过点DDEAB于点E,分别求得AE的长,进而BE 的长,然后利用勾股定理求得BD的长;然后根据,两式相除,即可得到的值.

试题解析:(1)如图(2),连接OAOBOCOD.···················································1

·3

························································································4

2)如图(3),过点DDE⊥AB于点E

·························································6

∵AB∥DC.

..···········································································9

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网