题目内容
【题目】如图,直线分别交x轴、y轴于A、B两点,直线BC与x轴交于点,P是线段AB上的一个动点点P与A、B不重合.
(1)求直线BC所对应的的函数表达式;
(2)设动点P的横坐标为t,的面积为S.
①求出S与t的函数关系式,并写出自变量t的取值范围;
②在线段BC上存在点Q,使得四边形COPQ是平行四边形,求此时点Q的坐标.
【答案】(1)y=2x+4;(2)①S=-2t+8(0<t<4);②点Q的坐标为(,).
【解析】
(1)根据函数表达式求出点B坐标,结合点C坐标求出BC的表达式;
(2)①根据三角形面积求法可得S与t的表达式;
②过点P作PQ∥x轴,交BC于点Q,得出P和Q的坐标,利用平行四边形的性质建立方程求解即可.
解:(1)直线y=-x+4与x轴、y轴交点坐标分别为A(4,0)、B(0,4)两点.
设直线BC所对应的函数关系式为y=kx+4.
∵直线BC经过点C(-2,0),
∴-2k+4=0,解得:k=2,
∴直线BC所对应的函数关系式为y=2x+4.
(2)①由题意,设点P的坐标为(t,-t+4),
∴S=S△POA=×OA×yP=×4×(-t+4)=-2t+8.
即S=-2t+8(0<t<4).
②过点P作PQ∥x轴,交BC于点Q.
∵点P的坐标为(t,-t+4),
∴点Q的坐标为(,-t+4).
∵四边形COPQ是平行四边形,
∴PQ=OC,即.
解得:t=,
∴点Q的坐标为(,).
练习册系列答案
相关题目