题目内容
【题目】如图,在△ABC中,∠A=90°,AB=2cm,AC=4cm.动点P从点A出发,沿AB方向以1cm/s的速度向点B运动,动点Q从点B同时出发,沿BA方向以1cm/s的速度向点A运动.当点P到达点B时,P,Q两点同时停止运动,以AP为一边向上作正方形APDE,过点Q作QF∥BC,交AC于点F.设点P的运动时间为ts,正方形和梯形重合部分的面积为Scm2.
(1)当t= _________ s时,点P与点Q重合;
(2)当t= _________ s时,点D在QF上;
(3)当点P在Q,B两点之间(不包括Q,B两点)时,求S与t之间的函数关系式.
【答案】(1)1 (2)(3)
【解析】
试题(1)当点P与点Q重合时,AP=BQ=t,且AP+BQ=AB=2,
∴t+t=2,解得t=1s,
故填空答案:1.
(2)当点D在QF上时,如答图1所示,此时AP=BQ=t.
∵QF∥BC,APDE为正方形,∴△PQD∽△ABC,
∴DP:PQ=AC:AB=2,则PQ=DP=AP=t.
由AP+PQ+BQ=AB=2,得t+t+t=2,解得:t=.
故填空答案:.
(3)当P、Q重合时,由(1)知,此时t=1;
当D点在BC上时,如答图2所示,此时AP=BQ=t,BP=t,求得t=s,进一步分析可知此时点E与点F重合;
当点P到达B点时,此时t=2.
因此当P点在Q,B两点之间(不包括Q,B两点)时,其运动过程可分析如下:
①当1<t≤时,如答图3所示,此时重合部分为梯形PDGQ.
此时AP=BQ=t,∴AQ=2﹣t,PQ=AP﹣AQ=2t﹣2;
易知△ABC∽△AQF,可得AF=2AQ,EF=2EG.
∴EF=AF﹣AE=2(2﹣t)﹣t=4﹣3t,EG=EF=2﹣t,
∴DG=DE﹣EG=t﹣(2﹣t)=t﹣2.
S=S梯形PDGQ=(PQ+DG)PD=[(2t﹣2)+(t﹣2)]t=t2﹣2t;
②当<t<2时,如答图4所示,此时重合部分为一个多边形.
此时AP=BQ=t,∴AQ=PB=2﹣t,
易知△ABC∽△AQF∽△PBM∽△DNM,可得AF=2AQ,PM=2PB,DM=2DN,
∴AF=4﹣2t,PM=4﹣2t.
又DM=DP﹣PM=t﹣(4﹣2t)=3t﹣4,∴DN=(3t﹣4).
S=S正方形APDE﹣S△AQF﹣S△DMN=AP2﹣AQAF﹣DNDM
=t2﹣(2﹣t)(4﹣2t)﹣×(3t﹣4)×(3t﹣4)
=﹣t2+10t﹣8.
综上所述,当点P在Q,B两点之间(不包括Q,B两点)时,S与t之间的函数关系式为:
S=.