题目内容

【题目】如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.

求证:
(1)∠ECD=∠EDC;
(2)OC=OD;
(3)OE是线段CD的垂直平分线.

【答案】
(1)

证明:∵OE平分∠AOB,EC⊥OA,ED⊥OB,

∴ED=EC,即△CDE为等腰三角形,

∴∠ECD=∠EDC


(2)

证明:∵点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,

∴∠DOE=∠COE,∠ODE=∠OCE=90°,OE=OE,

∴△OED≌△OEC(AAS),

∴OC=OD


(3)

证明:∵OC=OD,且DE=EC,

∴OE是线段CD的垂直平分线.


【解析】(1)根据角平分线性质可证ED=EC,从而可知△CDE为等腰三角形,可证∠ECD=∠EDC;(2)由OE平分∠AOB,EC⊥OA,ED⊥OB,OE=OE,可证△OED≌△OEC,可得OC=OD;(3)根据ED=EC,OC=OD,可证OE是线段CD的垂直平分线.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网