题目内容
【题目】已知关于x的一元二次方程x2+(2m﹣1)x+m2=0有两个实数根x1和x2.
(1)求实数m的取值范围;
(2)当x12﹣x22=0时,求m的值.
【答案】(1)m≤;(2)m=.
【解析】
试题(1)若一元二次方程有两实数根,则根的判别式△=b2-4ac≥0,建立关于m的不等式,求出m的取值范围;
(2)由x12-x22=0得x1+x2=0或x1-x2=0;当x1+x2=0时,运用两根关系可以得到-2m-1=0或方程有两个相等的实根,据此即可求得m的值.
试题解析:(1)由题意有△=(2m-1)2-4m2≥0,
解得m≤,
即实数m的取值范围是m≤;
(2)由两根关系,得根x1+x2=-(2m-1),x1x2=m2,
由x12-x22=0得(x1+x2)(x1-x2)=0,
若x1+x2=0,即-(2m-1)=0,解得m=,
∵>,
∴m=不合题意,舍去,
若x1-x2=0,即x1=x2
∴△=0,由(1)知m=,
故当x12-x22=0时,m=.
考点: 1.根的判别式;2.根与系数的关系.
练习册系列答案
相关题目