题目内容
【题目】小强遇到这样一个问题:如图1,在△ABC中,点D在线段BC上,∠BAD=75°,∠CAD=30°, AD=2,BD=2DC,求AC的长.
小强发现,过点C作CE∥AB,交AD的延长线于点E,通过构造△ACE,经过推理和计算能够使问题得到解决(如图2).
(1)请回答:∠ACE的度数为 ,AC的长为 .
参考小强思考问题的方法,解决问题:
(2)如图3,在四边形ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC与BD交于点E,AE=2,BE=2ED,求BC的长.
【答案】(1)75°,AC的长为3;(2).
【解析】
试题分析:(1)过点C作CE∥AB,交AD的延长线于点E,可知∠E=∠BAD=75°,因为∠CAD=30°,所以利用三角形内角和可算出∠ACE的度数是75度,再利用平行线分线段成比例定理得出DE=1,AE=2+1=3,所以AC=AE=3;(2)先建立平行线,过点D作DF⊥AC于点F.得到AB∥DF,由平行线分线段成比例定理得到,由AE=2,得EF=1,AF=3,在Rt△AFD中,由∠FAD=30°,可算出DF和AD的长度,又因为AD=AC,于是可知道AB和AC的长度,再由勾股定理算出BC的长度即可.
试题解析:(1)过点C作CE∥AB,交AD的延长线于点E,由两直线平行内错角相等可知∠E=∠BAD=75°,因为∠CAD=30°,所以利用三角形内角和可算出∠ACE=180-75-30=75,再利用平行线分线段成比例定理得出CD:BD=ED:AD,因为AD=2,BD=2DC,所以DE=1,于是AE=2+1=3,因为AC=AE,所以AC的长为3;(2)过点D作DF⊥AC于点F.
∵∠BAC=90°=∠DFA,∴AB∥DF,∴△ABE∽△FDE,∴,∵AE=2,∴EF=1,AF=2+1=3,AB=2DF.在△ACD中,∵∠CAD=30°,∠ADC=75°,∴∠ACD=75°,∴∠ADC=∠ACD,∴AC=AD.∵DF⊥AC,∴∠AFD=90°,在Rt△AFD中,∠FAD=30°,∴设DF=x, 则AD=2x,∴,解得:(舍去),∴DF=,AB=AC=AD=,∴BC==.