题目内容
【题目】某玩具厂生产一种玩具,本着控制固定成本,降价促销的原则,使生产的玩具能够全部售出.据市场调查,若按每个玩具280元销售时,每月可销售300个.若销售单价每降低1元,每月可多售出2个.据统计,每个玩具的固定成本Q(元)与月产销量y(个)满足如下关系:
月产销量y(个) | … | 160 | 200 | 240 | 300 | … |
每个玩具的固定成本Q(元) | … | 60 | 48 | 40 | 32 | … |
(1)写出月产销量y(个)与销售单价x (元)之间的函数关系式;
(2)求每个玩具的固定成本Q(元)与月产销量y(个)之间的函数关系式;
(3)若每个玩具的固定成本为30元,则它占销售单价的几分之几?
(4)若该厂这种玩具的月产销量不超过400个,则每个玩具的固定成本至少为多少元?销售单价最低为多少元?
【答案】
(1)解:由于销售单价每降低1元,每月可多售出2个,所以月产销量y(个)与销售单价x (元)之间存在一次函数关系,不妨设y=kx+b,则(280,300),(279,302)满足函数关系式,得 解得 ,
产销量y(个)与销售单价x (元)之间的函数关系式为y=﹣2x+860.
(2)解:观察函数表可知两个变量的乘积为定值,所以固定成本Q(元)与月产销量y(个)之间存在反比例函数关系,不妨设Q= ,将Q=60,y=160代入得到m=9600,
此时Q=
(3)解:当Q=30时,y=320,由(1)可知y=﹣2x+860,所以x=270,即销售单价为270元,
由于 = ,∴成本占销售价的
(4)解:若y≤400,则Q≥ ,即Q≥24,固定成本至少是24元,
400≥﹣2x+860,解得x≥230,即销售单价最低为230元
【解析】(1)设y=kx+b,把(280,300),(279,302)代入解方程组即可;(2):观察函数表可知两个变量的乘积为定值,所以固定成本Q(元)与月产销量y(个)之间存在反比例函数关系,不妨设Q= ,由此即可解决问题;(3) 求出销售价即可解决问题;(4)根据条件分别列出不等式即可解决问题。
【考点精析】解答此题的关键在于理解一元一次不等式组的应用的相关知识,掌握1、审:分析题意,找出不等关系;2、设:设未知数;3、列:列出不等式组;4、解:解不等式组;5、检验:从不等式组的解集中找出符合题意的答案;6、答:写出问题答案,以及对确定一次函数的表达式的理解,了解确定一个一次函数,需要确定一次函数定义式y=kx+b(k不等于0)中的常数k和b.解这类问题的一般方法是待定系数法.
【题目】某校八年级学生某科目期末评价成绩是由完成作业、单元检测、期末考试三项成绩构成的,如果期末评价成绩80分以上(含80分),则评为“优秀”.下面表中是小张和小王两位同学的成绩记录:
完成作业 | 单元测试 | 期末考试 | |
小张 | 70 | 90 | 80 |
小王 | 60 | 75 |
(1)若按三项成绩的平均分记为期末评价成绩,请计算小张的期末评价成绩;
(2)若按完成作业、单元检测、期末考试三项成绩按的权重来确定期末评价成绩.
①请计算小张的期末评价成绩为多少分?
②小王在期末(期末成绩为整数)应该最少考多少分才能达到优秀?