题目内容
【题目】“十字相乘法”能把二次三项式分解因式,对于形如ax2+bxy+cy2的关于x,y的二次三项式来说,方法的关键是把x2项系数a分解成两个因数a1,a2的积,即a=a1a2,把y2项系数c分解成两个因数c1,c2的积,即c=c1c2,并使a1c2+a2c1正好等于xy项的系数b,那么可以直接写成结果:ax2+bxy+cy2=(a1x+c1y)(a2x+c2y).
例:分解因式:x2﹣2xy﹣8y2.
解:如图1,其中1=1×1,﹣8=(﹣4)×2,而﹣2=1×2+1×(﹣4).
∴x2﹣2xy﹣8y2=(x﹣4y)(x+2y)
而对于形如ax2+bxy+cy2+dx+ey+f的x,y的二元二次式也可以用十字相乘法来分解,如图2,将a分解成mn乘积作为一列,c分解成pq乘积作为第二列,f分解成jk乘积作为第三列,如果mq+np=b,pk+qj=e,mk+nj=d,即第1,2列、第2,3列和第1,3列都满足十字相乘规则,则原式=(mx+py+j)(nx+qy+k);
例:分解因式:x2+2xy﹣3y2+3x+y+2
解:如图3,其中1=1×1,﹣3=(﹣1)×3,2=1×2;
而2=1×3+1×(﹣1),1=(﹣1)×2+3×1,3=1×2+1×1;
∴x2+2xy﹣3y2+3x+y+2=(x﹣y+1)(x+3y+2)
请同学们通过阅读上述材料,完成下列问题:
(1)分解因式:
①6x2﹣17xy+12y2=
②2x2﹣xy﹣6y2+2x+17y﹣12=
③x2﹣xy﹣6y2+2x﹣6y=
(2)若关于x,y的二元二次式x2+7xy﹣18y2﹣5x+my﹣24可以分解成两个一次因式的积,求m的值.
【答案】(1)①(3x﹣4y)(2x﹣3y),②(x﹣2y+3)(2x+3y﹣4),③(x﹣3y)(x+2y+2);(2)43或-78.
【解析】
(1)①参照图1,画出图形,根据十字相乘法则分解因式即可;
②参照图3,画出图形,根据十字相乘法则分解因式即可;
③参照图1,画出图形,根据十字相乘法则分解,再利用提取公因式法即可;
(2)参照图3,先根据所给的二元二次式画出图,然后根据十字相乘法则中对应系数的确认方法即可得.
(1)①如图①,其中,而
②如图②,其中
而
③如图③,其中,而
故答案为:①;②;③;
(2)如图④,由十字相乘法可知,有以下两种情况:
其中
而
或
故m的值为或.
【题目】已知二元一次方程,通过列举将方程的解写成下列表格的形式:
-1 | 5 | 6 | |||
6 | 5 | 0 |
如果将二元一次方程的解所包含的未知数的值对应直角坐标系中一个点的横坐标,未知数的值对应这个点的纵坐标,这样每一个二元一次方程的解,就可以对应直角坐标系中的一个点,例如:方程的解的对应点是.
(1)表格中的________,___________;
(2)通过以上确定对应点坐标的方法,将表格中给出的五个解依次转化为对应点的坐标,并在所给的直角坐标系中画出这五个点;根据这些点猜想方程的解的对应点所组成的图形是_________,并写出它的两个特征①__________,②_____________;
(3)若点好落在的解对应的点组成的图形上,求的值.