题目内容
【题目】计算﹣a2a3的结果是( )
A.a5B.﹣a5C.﹣a6D.a6
【答案】B
【解析】
根据同底数幂的乘法法则求解即可得出答案.
解:﹣a2a3=﹣a5,
故选:B.
【题目】已知x2+x﹣5=0,则代数式(x﹣1)2﹣x(x﹣3)+(x+2)(x﹣2)的值为 .
【题目】如图,在△ABC中,AB=AC=13厘米,BC=10厘米,AD⊥BC于点D,动点P从点A出发以每秒1厘米的速度在线段AD上向终点D运动,设动点运动时间为t秒.(1)求AD的长.(2)当P、C两点的距离为 时,求t的值.(3)动点M从点C出发以每秒2厘米的速度在射线CB上运动.点M与点P同时出发,且当点P运动到终点D时,点M也停止运动.是否存在时刻t,使得S△PMD= S△ABC?若存在,请求出t的值;若不存在,请说明理由.
【题目】如果平行四边形ABCD被一条对角线分成两个等腰三角形,则称该平行四边形为“等腰平行四边形”,如果等腰平行四边形ABCD的一组邻边长分别为4和6,则它的面积是( )A.16 或6 B.8 或6 C.16 D.8
【题目】某市为提高学生参与体育活动的积极性,围绕“你喜欢的体育运动项目(只写一项)”这一问题,对初一新生进行随机抽样调查.下面是根据调查结果绘制成的统计图(不完整).
请你根据图中提供的信息解答下列问题:
(1)本次抽样调查一共调查调查了多少名学生?
(2)根据条形统计图中的数据,求扇形统计图中“最喜欢足球运动”的学生数对应扇形的圆心角度数.
(3)请将条形图补充完整.
(4)若该市2017年约有初一新生21000人,请你估计全市本届学生中“最喜欢足球运动”的学生有多少人?
【题目】如图,AB是⊙O的直径,C是AB延长线上一点,CD与⊙O相切于点E,AD⊥CD于点D.
(1)求证:AE平分∠DAC;
(2)若AB=4,∠ABE=60°.
①求AD的长;
②求出图中阴影部分的面积.
【题目】下列说法正确的是( )
A.整数包括正整数和负整数
B.零是整数,但不是自然数
C.无限小数不是有理数
D.整数和分数都是有理数
【题目】已知:如图所示,在△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动. (1)如果P,Q分别从A,B同时出发,那么几秒后,△PBQ的面积等于4cm2?(2)如果P,Q分别从A,B同时出发,那么几秒后,PQ的长度等于2 cm?(3)在(1)中,△PQB的面积能否等于7cm2?说明理由.
【题目】随着阿里巴巴、淘宝网、京东、小米等互联网巨头的崛起,催生了快递行业的高速发展.据调查,杭州市某家小型快递公司,今年一月份与三月份完成投递的快递总件数分别为10万件和12.1万件.现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递快递总件数的月平均增长率;(2)如果平均每人每月最多可投递快递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年4月份的快递投递任务?如果不能,请问至少需要增加几名业务员?