题目内容

在Rt△ABC中,∠ACB=90°,CD⊥AB于D,若AB=10,AC-BC=2,求CD的长.
分析:此题先设BC=x,利用勾股定理,可求出BC和AC,再利用三角形面积不变,用两种方法表示,即可求出CD的长.
解答:精英家教网解:设BC=a,AC=b,AB=c,则有b-a=2
由a2+b2=c2得(b-a)2+2ab=c2,即
4+2ab=102
∴ab=48
1
2
ab=
1
2
×10•CD=24,
∴CD=4.8.
点评:本题利用了勾股定理以及直角三角形的面积公式(其面积=
1
2
×两直角边的积=
1
2
×斜边×斜边上的高).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网