题目内容
【题目】如图,正方形EFGH的四个顶点分别在正方形ABCD的四条边上,若正方形EFGH与正方形ABCD的相似比为,则()的值为_____.
【答案】
【解析】
根据题意,由AAS证明△AEH≌△BFE,则BE=AH,根据相似比为,令EH=,AB=,设AE=,AH=,在直角三角形AEH中,利用勾股定理,即可求出的值,即可得到答案.
解:在正方形EFGH与正方形ABCD中,
∠A=∠B=90°,EF=EH,∠FEH=90°,
∴∠AEH+∠AHE=90°,∠BEF+∠AEH=90°,
∴∠AHE=∠BEF,
∴△AEH≌△BFE(AAS),
∴BE=AH,
∵,
令EH=,AB=,
在直角三角形AEH中,设AE=,AH=AB-AE=,
由勾股定理,得,
即,
解得:或,
∵,
∴,
∴,
∴;
故答案为:.
练习册系列答案
相关题目
【题目】已知二次函数的解析式是y=x2﹣2x﹣3.
(1)与y轴的交点坐标是 ,顶点坐标是 .
(2)在坐标系中利用描点法画出此抛物线;
x | … | … | |||||
y | … | … |
(3)结合图象回答:当﹣2<x<2时,函数值y的取值范围是 .