题目内容

【题目】如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”.

(1)请用直尺和圆规画一个“好玩三角形”;

(2)如图1,在RtABC中,C=90°,tanA= ,求证:ABC是“好玩三角形”;

(3)如图2,已知菱形ABCD的边长为a,ABC=2β,点P,Q从点A同时出发,以相同速度分别沿折线AB﹣BC和AD﹣DC向终点C运动,记点P经过的路程为s.

当β=45°时,若APQ是“好玩三角形”,试求的值;

当tanβ的取值在什么范围内,点P,Q在运动过程中,有且只有一个APQ能成为“好玩三角形”.请直接写出tanβ的取值范围.

(4)依据(3)的条件,提出一个关于“在点P,Q的运动过程中,tanβ的取值范围与APQ是‘好玩三角形’的个数关系”的真命题(“好玩三角形”的个数限定不能为1)

【答案】(1)见解析 (2)见解析 (3) <tanβ<2

(4)在P、Q的运动过程中,当0<tanβ<时,使得△APQ成为“好玩三角形”的个数为2.

【解析】解:(1)如图1,

作一条线段AB,

作线段AB的中点O,

以点O为圆心,AB长为半径画圆,

在圆O上取一点C(点E、F除外),连接AC、BC.

∴△ABC是所求作的三角形.

(2)如图2,

取AC的中点D,连接BD.

∵∠C=90°,tanA=

设BC= x,则AC=2x,

D是AC的中点,

CD= AC=x

BD= = =2x,

AC=BD

∴△ABC是“好玩三角形”;

(3)当β=45°,点P在AB上时,

∴∠ABC=2β=90°,

∴△APQ是等腰直角三角形,不可能是“好玩三角形”,

如图3,当P在BC上时,连接AC交PQ于点E,延长AB交QP的延长线于点F,

四边形ABCD是菱形,ABC=2β=90°,

四边形ABCD是正方形,

AB=BC,ACB=ACD=45°,

∴∠CAB=ACP,

PC=CQ,ACB=ACD,

∴∠AEF=CEP=90°,

∴△AEF∽△CEP,且AEF、CEP和BFP都是等腰直角三角形,

PE=CE,

)当底边PQ与它的中线AE相等时,即AE=PQ时,

)当腰AP与它的中线QM相等,即AP=QM时,

作QNAP于N,如图4

AP=QM=AQ

MN=AN= MP.

QN= MN,

∴tan∠APQ=

∴tan∠APE=

=

②由①可知,当AE=PQ和AP=QM时,有且只有一个△APQ能成为“好玩三角形”,

<tanβ<2时,有且只有一个△APQ能成为“好玩三角形”.

(4)由(3)可以知道:在P、Q的运动过程中,当0<tanβ<时,使得△APQ成为“好玩三角形”的个数为2.

(1)先画一条线段AB,再确定AB的中点O,以点O为圆心,AB为半径画圆,在圆O上取一点C,连接AC、BC,则△ABC是所求作的三角形;

(2)取AC的中点D,连接BD,设BC= x,根据条件可以求出AC=2x,由三角函数可以求出BD=2x,从而得出AC=BD,从而得出结论;

(3)①当β=45°时,分情况讨论,P点在AB上时,△APQ是等腰直角三角形,不可能是“好玩三角形”,当P在BC上时,延长AB交QP的延长线于点F,可以求出,再分情况讨论,当AE=PQ和AP=QM时,求出的值;

②根据①求出的两个的值可以求出tanβ的取值范围;

(4)由(3)可以得出“在P、Q的运动过程中,当0<tanβ<时,使得△APQ成为‘好玩三角形’的个数为2”是真命题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网