题目内容
如图△ABC中,E、F为BC的三等份点,M为AC的中点,BM与AE、AF分别交于G、H,则BG:GH:HM=______.
过点M作MK∥BC,交AF,AE分别于K,N,
∵M是AC的中点,
∴
=
=
=
=
,
∵E、F是BC的三等分点,
∴BE=EF=FC,
∴MN=2NK,
∵
=
=
,
=
=1,
∴MH=
BH,MG=BG,
设MH=a,BH=4a,BG=GM=
,
∴GH=GM-MN=
,
∴BG:GH:HM=
:
:a=5:3:2.
故答案为:5:3:2.
∵M是AC的中点,
∴
MN |
EC |
NK |
EF |
AN |
AE |
AM |
AC |
1 |
2 |
∵E、F是BC的三等分点,
∴BE=EF=FC,
∴MN=2NK,
∵
MH |
BH |
MK |
BF |
1 |
4 |
MG |
BG |
MN |
BE |
∴MH=
1 |
4 |
设MH=a,BH=4a,BG=GM=
5a |
2 |
∴GH=GM-MN=
3a |
2 |
∴BG:GH:HM=
5a |
2 |
3a |
2 |
故答案为:5:3:2.
练习册系列答案
相关题目