题目内容
【题目】如图,△ABC≌△ADE,已知点C和点E是对应点,BC的延长线分别交AD,DE于点F,G,且∠DAC=10°,∠B=∠D=25°,∠EAB=120°,试求∠DFB和∠DGB的度数.
【答案】90°;65°
【解析】试题分析:根据全等三角形的性质可得∠BAC=∠DAE,根据三角形的内角和定理求出∠BAC,再求出∠BAD,然后根据三角形的一个外角等于与它不相邻的两个内角的和分别求解即可.
试题解析:
∵△ABC≌△ADE,∴∠BAC=∠DAE.
∵∠EAB=∠BAC+∠DAC+∠DAE,∠DAC=10°,∠EAB=120°,
∴∠BAC=∠DAE=55°.
∴∠BAD=∠CAD+∠BAC=65°.
∵∠DFB是△ABF的一个外角,
∴∠DFB=∠BAF+∠B=65°+25°=90°.
又∵∠DFB是△DFG的一个外角,
∴∠DFB=∠D+∠DGB,
∴∠DGB=∠DFB-∠D=90°-25°=65°.
练习册系列答案
相关题目