题目内容
【题目】完成下面的推理.
已知:如图,AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD.
试说明:∠EGF=90°.
解:因为HG∥AB(已知),
所以∠1=∠3( ).
又因为HG∥CD(已知),
所以∠2=∠4( ).
因为AB∥CD(已知),
所以∠BEF+ =180°( ).
又因为EG平分∠BEF(已知),
所以∠1=∠ ( ).
又因为FG平分∠EFD(已知),
所以∠2=∠ ( ),
所以∠1+∠2=( + ).
所以∠1+∠2=90°.
所以∠3+∠4=90°( ),即∠EGF=90°.
【答案】两直线平行,内错角相等;两直线平行,内错角相等;∠EFD;两直线平行,同旁内角互补;∠BEF;角平分线定义;∠EFD;角平分线定义;∠BEF;∠EFD;等量代换.
【解析】
依据平行线的性质和判定定理以及角平分线的定义,结合解答过程进行填空即可.
∵AB∥GH(已知),
∴∠1=∠3(两直线平行,内错角相等),
又∵CD∥GH(已知),
∴∠2=∠4(两直线平行,内错角相等).
∵AB∥CD(已知),
∴∠BEF+∠EFD=180°(两直线平行,同旁内角互补).
∵EG平分∠BEF(已知),
∴∠1=∠BEF(角平分线定义),
又∵FG平分∠EFD(已知),
∴∠2=∠EFD(角平分线定义),
∴∠1+∠2=(∠BEF+∠EFD),
∴∠l+∠2=90°,
∴∠3+∠4=90°(等量代换),
即∠EGF=90°.
故答案为:两直线平行,内错角相等;两直线平行,内错角相等;∠EFD;两直线平行,同旁内角互补;∠BEF;角平分线定义;∠EFD;角平分线定义;∠BEF;∠EFD;等量代换.
练习册系列答案
相关题目