题目内容
【题目】如图,已知AB为⊙O的直径,点E在⊙O上,∠EAB的平分线交⊙O于点C,过点C作AE的垂线,垂足为D,直线DC与AB的延长线交于点P.
(1)判断直线PC与⊙O的位置关系,并说明理由;
(2)若tan∠P=,AD=6,求线段AE的长.
【答案】(1)PC是⊙O的切线;(2)
【解析】试题分析:(1)结论:PC是⊙O的切线.只要证明OC∥AD,推出∠OCP=∠D=90°,即可.
(2)由OC∥AD,推出,即,解得r=,由BE∥PD,AE=ABsin∠ABE=ABsin∠P,由此计算即可.
试题解析:解:(1)结论:PC是⊙O的切线.理由如下:
连接OC.∵AC平分∠EAB,∴∠EAC=∠CAB.又∵∠CAB=∠ACO,∴∠EAC=∠OCA,∴OC∥AD.∵AD⊥PD,∴∠OCP=∠D=90°,∴PC是⊙O的切线.
(2)连接BE.在Rt△ADP中,∠ADP=90°,AD=6,tan∠P=,∴PD=8,AP=10,设半径为r.∵OC∥AD,∴,即,解得r=.∵AB是直径,∴∠AEB=∠D=90°,∴BE∥PD,∴AE=ABsin∠ABE=ABsin∠P=×=.
练习册系列答案
相关题目