题目内容
【题目】如图,在中,于,,,,分别是,的中点.
(1)求证:,;
(2)连接,若,求的长.
【答案】(1)证明见解析;(2)EF=5.
【解析】试题分析:(1)证明△BDG≌△ADC,根据全等三角形的性质、直角三角形的性质证明;
(2)根据直角三角形的性质分别求出DE、DF,根据勾股定理计算即可.
试题解析:(1)∵AD⊥BC,
∴∠ADB=∠ADC=90°,
在△BDG和△ADC中,
,
∴△BDG≌△ADC,
∴BG=AC,∠BGD=∠C,
∵∠ADB=∠ADC=90°,E,F分别是BG,AC的中点,
∴DE=BG=EG,DF=AC=AF,
∴DE=DF,∠EDG=∠EGD,∠FDA=∠FAD,
∴∠EDG+∠FDA=90°,
∴DE⊥DF;
(2)∵AC=10,
∴DE=DF=5,
由勾股定理得,EF= =5 .
练习册系列答案
相关题目