题目内容
【题目】如图,AB是⊙O的直径,点C在BA的延长线上,CA=AO,点D在⊙O上,∠ABD=30°.
⑴求证:CD是⊙O的切线;
⑵若点P在直线AB上,⊙P与⊙O外切于点B,与直线CD相切于点E,设⊙O与⊙P的半径分别为r与R,求的值.
【答案】(1)证明:连结OD、DA
∵AB是⊙O的直径,∴∠BDA=90°
又∠ABD=30°,∴AD=AB=OA
又AC=AO,∴∠ODC=90°
∴CD切⊙O于点D
(2)方法一:连结PE,由(1)知∠DAB=60°,又AD=AC
∴∠C=30°
又∵DE切⊙P于E,∴PE⊥CE
∴PE=CP
又PE=BP=R,CA=AO=OB=r
∴3r=R,即
方法二:连结PE,
又∵DE切⊙P于E,∴PE⊥CE
∴OD∥PE
∴=
即,∴
【解析】
(1)欲证:CD是⊙O的切线,只要转化为证明∠ODC=90°即可;
(2)连接PE,易证,又PE=BP=R,CA=AO=OB=r,即可得到结果.
练习册系列答案
相关题目
【题目】有这样一个问题:探究函数的图象与性质.小东根据学习函数的经验,对函数的图象与性质进行了探究.下面是小东的探究过程,请补充完整:
(1)函数的自变量x的取值范围是 ;
(2)下表是x与y的几组对应值.
... | 1 | 2 | 3 | ... | ||||||||
... | m | ... |
求m的值;
(3)如图,在平面直角坐标系中,已描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;
(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(1,).结合函数的图象,写出该函数的其它性质(写两条即可).