题目内容
【题目】如图,在△ABC中,∠B=40°,∠C=62°,AD是△ABC的高,AE是△ABC的角平分线.求∠EAD的度数.
【答案】解:∵∠B=40°,∠C=62°, ∴∠BAC=180°﹣62°﹣40°=78°,
∵AE为∠BAC角平分线,
∴∠BAE=78°÷2=39°,
∵AD为△ABC的高,
∴∠ADB=90°,
∴∠DAC=90°﹣∠C=90°﹣62°=28°,
∴∠EAD=∠EAC﹣∠DAC=39°﹣28°=11°,
即∠EAD的度数是11°.
【解析】首先根据三角形的内角和定理,求出∠BAC的度数是多少;然后根据AE为角平分线,求出∠BAE的度数是多少;最后在Rt△DAC中,求出∠DAC的度数,即可求出∠EAD的度数是多少.
练习册系列答案
相关题目