题目内容
【题目】如图,在平面直角坐标系xOy中,O为坐标原点,已知直线经过点A(-6,0),它与y轴交于点B,点B在y轴正半轴上,且OA=2OB
(1)求直线的函数解析式
(2)若直线也经过点A(-6,0),且与y轴交于点C,如果ΔABC的面积为6,求C点的坐标
【答案】(1)(2)C(0,5)或(0,1)
【解析】
(1)由OA=2OB可求得OB长,继而可得点B坐标,然后利用待定系数法进行求解即可;
(2)根据三角形面积公式可以求得BC的长,继而可得点C坐标.
(1)A(-6,0),
OA=6 ,
OA=2OB,
OB=3 ,
B在y轴正半轴,
B(0,3),
设直线解析式为:y=kx+3(k ≠0),
将A(-6,0)代入得:6k+3=0,
解得:,
;
(2) ,
AO=6,
BC=2 ,
又∵B(0,3),3+2=5,3-2=1,
C(0,5)或(0,1).
练习册系列答案
相关题目
【题目】某欢乐谷为回馈广大谷迷,在暑假期间推出学生个人门票优惠价,各票价如下:
票价种类 | (A)学生夜场票 | (B)学生日通票 | (C)节假日通票 |
单价(元) | 80 | 120 | 150 |
某慈善单位欲购买三种类型的票共100张奖励品学兼优的留守学生,其中购买的B种票数是A种票数的3倍还多7张,C种票y张.
(1)直接写出y与x之间的函数关系式;
(2)设购票总费用为w元,求w(元)与x(张)之间的函数关系式;
(3)为方便学生游玩,计划购买的学生夜场票不低于20张,且每种票至少购买5张,则有几种购票方案?并指出哪种方案费用最少.