题目内容

已知一次函数y=kx+b的图象与反比例函数数学公式的图象相交于点P(2,1),与x轴交于点E,与y轴交于点F,O为坐标原点.
(1)求k,b的值;
(2)在同一坐标系中画出这两个函数的图象;
(3)△EOF的面积是△EOP的面积的多少倍?
(4)能不能在反比例函数数学公式的图象上找到一点Q,使△QOE的面积△EOF的面积相等?如果能,请写出Q点的坐标;若不能,请说明理由.

(1)∵点P(2,1)在反比例函数的图象上,
∴1=
解得:k=2,
∵点P(2,1)在一次函数y=kx+b的图象上,
∴1=2×2+b,
解得:b=-3,
∴k=2,b=-3;

(2)图象如右图:

(3)∵E(,0),F(0,-3),
∴S△EOF=×OE×OF=××3=
S△EOP=××1=
∴S△EOF=3S△EOP

(4)能.理由如下:
若S△QOE=S△EOF
则Q的纵坐标为±3,
令y=±3,代入,得
∴Q(,3)或Q(-,-3).
分析:(1)将点P代入反比例函数求得k值,再代入一次函数求得b值;
(2)根据求得的函数画出函数图象;
(3)由于OE边相同,则
(4)设出Q点坐标,由△QOE的面积△EOF的面积相等,求出Q点坐标.
点评:本题考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网