题目内容
【题目】图①是一块边长为1,周长记为P1的正三角形纸板,沿图①的底边剪去一块边长为的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪如图掉正三角形纸板边长的)后,得图③,④,…,记第n(n≥3)块纸板的周长为Pn,则P2018﹣P2017的值为( )
A. B. C. D.
【答案】C
【解析】
根据等边三角形的性质(三边相等)求出等边三角形的周长P1,P2,P3,P4,根据周长相减的结果能找到规律即可求出答案.
P1=1+1+1=3,
P2=1+1+=,
P3=1+1+×3=,
P4=1+1+×2+×3=,
…
∴p3-p2=-==;
P4-P3=-==,
则Pn-Pn-1=,
故P2018﹣P2017=
故答案为:
练习册系列答案
相关题目
【题目】未成年人思想道德建设越来越受到社会的关注,辽阳青少年研究所随机调查了本市一中学100名学生寒假中花零花钱的数量(钱数取整数元),以便引导学生树立正确的消费观.根据调查数据制成了频
分组 | 频数 | 频率 |
0.5~50.5 |
| 0.1 |
50.5~ | 20 | 0.2 |
100.5~150.5 |
|
|
200.5 | 30 | 0.3 |
200.5~250.5 | 10 | 0.1 |
率分布表和频率分布直方图(如图).
(1)补全频率分布表;
(2)在频率分布直方图中,长方形ABCD的面积是 ;这次调查的样本容量是 ;
(3)研究所认为,应对消费150元以上的学生提出勤俭节约的建议.试估计应对该校1000名学生中约多少名学生提出这项建议.