题目内容
(11分)将两个全等的直角三角形ABC和DBE按图①方式摆放,其中∠ACB=∠DEB=90º,∠A=∠D=30º,点E落在AB上,DE所在直线交AC所在直线于点F.
(1)求证:AF+EF=DE;
(2)若将图①中的△DBE绕点B按顺时针方向旋转角,且0º<<60º,其他条件不变,请在图②中画出变换后的图形,并直接写出(1)中的结论是否仍然成立;
(3)若将图①中的△DBE绕点B按顺时针方向旋转角,且60º<<180º,其他条件不变,如图③.你认为(1)中的结论还成立吗?若成立,写出证明过程;若不成立,请写出此时AF、EF与DE之间的关系,并说明理由.
【答案】
(1)通过三角形全等来分析CF=EF,进而代换求角(2)图二(3)不成立,正确的结论是AF-EF=DE
【解析】
试题分析:证明:(1)连接BF(如图①)
∵△ABC≌△DBE,∴BC=BE,AC=DE。
∵∠ACB=∠DEB=900
∴∠BCF=∠BEF=900 ,∵BF=BF,
∵Rt△BFC≌Rt△BFE
∴CF=EF。∵AF+CF=AC,∴AF+EF=DE
(2)画出正确的图形如图②。(1)中的结论AF+EF=DE仍然成立
(3)不成立。此时AF、EF与DE之间的关系为AF-EF=DE
理由:连接BF(如图③),
∵△ABC≌△DBE,
∴BC=BE,AC=DE
∵∠ACB=∠DEB=900 ,
∴∠BCF=∠BEF=900 ,又∵BF=BF,
∵Rt△BFC≌Rt△BFE
∴CF=EF。∵AF-CF=AC,∴AF-EF=DE
∴(1)中的结论不成立。正确的结论是AF-EF=DE
图二
考点:三角形全等
点评:三角形全等的基本求法和判定是历来考察的重点,考生要熟练把握
练习册系列答案
相关题目