题目内容
如图,E,B,A,F四点共线,点D是正三角形ABC的边AC的中点,点是直线上异于A,B的一个动点,且满足,则 ( )
A.点一定在射线上 |
B.点一定在线段上 |
C.点可以在射线上,也可以在线段上 |
D.点可以在射线上,也可以在线段上 |
B
分析:连接BD、PC、PD,如图,由等腰三角形的性质可得∠BCD=30°,而∠CPD=30°,可得B、C、D、P四点共圆,于是可得P点的位置.
解答:解:连接BD、PC、PD,如图,
∵△ABC等边三角形,
∴∠CBD=30°,
又∠CPD=30°,
∴∠CBD=∠CPD,
∴B、C、D、P四点共圆,
又∠BDC=90°,
∴点P在以BC为直径的圆上,
∴点P一定在线段AB上.
故选B.
解答:解:连接BD、PC、PD,如图,
∵△ABC等边三角形,
∴∠CBD=30°,
又∠CPD=30°,
∴∠CBD=∠CPD,
∴B、C、D、P四点共圆,
又∠BDC=90°,
∴点P在以BC为直径的圆上,
∴点P一定在线段AB上.
故选B.
练习册系列答案
相关题目