题目内容
如图,AB∥CD,在AB、CD内有一条折线EPF,∠BEP的平分线与∠DFP的平分线相交于点Q,则∠EPF与∠EQF之间的关系是( )

A.∠EPF+2∠EQF=360° | B.∠EPF-2∠EQF=360° |
C.2∠EPF+∠EQF=360° | D.2∠EPF-∠EQF=360° |

过点Q作QH∥AB,如图,
∴∠1=∠3,
∵QE平分∠BEP,
∴∠1=∠2,
∴∠2=∠3,
∵AB∥CD,
∴QH∥CD,
同理可得∠6=∠4,
∴∠EQF=∠PEQ+∠QFP,
∵∠EQF+∠PEQ+∠QFP+∠EPF=360°,
∴∠EPF+2∠EQF=360°.
故选A.

∴∠1=∠3,
∵QE平分∠BEP,
∴∠1=∠2,
∴∠2=∠3,
∵AB∥CD,
∴QH∥CD,
同理可得∠6=∠4,
∴∠EQF=∠PEQ+∠QFP,
∵∠EQF+∠PEQ+∠QFP+∠EPF=360°,
∴∠EPF+2∠EQF=360°.
故选A.

练习册系列答案
相关题目