题目内容
【题目】如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,直角∠MON的顶点O在AB上,OM、ON分别交CA、CB于点P、Q,∠MON绕点O意旋转.当时.的值为_____.
【答案】
【解析】
如图,过点O作OH⊥AC于H,OG⊥BC于G,由条件可以表示出HO、GO的值,通过证明△PHO∽△QGO由相似三角形的性质就可以求出结论.
解:过点O作OH⊥AC于H,OG⊥BC于G,
∴∠OHP=∠OGQ=90°.
∵∠ACB=90°,
∴四边形HCGO为矩形,
∴∠HOG=90°,
∴∠HOP=∠GOQ,
∴△PHO∽△QGO,
∴.
∵,设OA=x,则OB=2x,且∠ABC=30°,
∴AH=x,OG=x.
在Rt△AHO中,由勾股定理,得
OH= x,
∴ ,
∴.
故答案为:.
练习册系列答案
相关题目
【题目】二次函数(是常数,)的自变量与函数值的部分对应值如下表:
… | 0 | 1 | 2 | … | |||
… | … |
且当时,与其对应的函数值.有下列结论:①;②和3是关于的方程的两个根;③.其中,正确结论的个数是( )
A. 0B. 1C. 2D. 3