题目内容
【题目】如图,已知△AOD是等腰三角形,点A(12,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P,O两点的二次函数y1,和过P、A两点的二次函数y2,的开口均向下,它们的顶点分别为B,C,点B,C分别在OD、AD上.当OD=AD=10时,则两个二次函数的最大值之和等于_____.
【答案】8
【解析】
过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,设P(2x,0),根据二次函数的对称性得出OF=PF=x,△OBF∽△ODE,△ACM∽△ADE,推出,,代入求出BF和CM,相加即可求出答案.
过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,
∵BF⊥OA,DE⊥OA,CM⊥OA,
∴BF∥DE∥CM,
∵OD=AD=10,DE⊥OA,
∴OE=EA=OA=6,
由勾股定理得:DE==8.
设P(2x,0),根据二次函数的对称性得出OF=PF=x,
∵BF∥DE∥CM,
∴△OBF∽△ODE,△ACM∽△ADE,
∴,,
∵AM=PM=(OA-OP)=(12-2x)=6-x,
即,,
解得:BF=x,CM=8-x,
∴BF+CM=8.
故答案为:8.
【题目】近年来,中学生的身体素质普遍下降,某校为了提高本校学生的身体素质,落实教育部门“在校学生每天体育锻炼时间不少于1小时”的文件精神,对部分学生的每天体育锻炼时间进行了调查统计.以下是本次调查结果的统计表和统计图.
组别 | A | B | C | D | E |
时间t(分钟) | t<40 | 40≤t<60 | 60≤t<80 | 80≤t<100 | t≥100 |
人数 | 12 | 30 | a | 24 | 12 |
(1)求出本次被调查的学生数;
(2)请求出统计表中a的值;
(3)求各组人数的众数;
(4)根据调查结果,请你估计该校2400名学生中每天体育锻炼时间不少于1小时的学生人数.