题目内容
【题目】如图,在△ABC中,BE⊥AC于点E,BC的垂直平分线分别交AB、BE于点D、G,垂足为H,CD⊥AB,CD交BE于点F
(1)求证:△BDF≌△CDA,并写出BF与AC的数量关系.
(2)若DF=DG,求证:①BE平分∠ABC; ②CE=BF.
【答案】(1)证明见解析,BF=AC;(2)①见解析;②见解析
【解析】
(1)由垂直平分线的性质可得BD=CD,由“AAS”可证△BDF≌△CDA,由全等三角形的性质可得BF=AC;
(2)①由等腰三角形的性质和对顶角的性质可得∠DGF=∠DFG=∠BGH,由等角的余角相等可得∠DBF=∠FBC,即BE平分∠ABC;
②由△BDF≌△CDA可得BF=AC,由题意可证△ABE≌△CBE,可得AE=EC=AC,即CE=BF.
证明:(1)∵DH垂直平分BC,
∴BD=CD,
∵BE⊥AC, CD⊥AB,
∴∠A+∠DBF=90°,∠DBF+∠DFB=90°,∠ADC=∠FDB=90°,
∴∠A=∠DFB,且∠ADC=∠FDB,BD=CD,
∴△BDF≌△CDA(AAS),
∴BF=AC;
(2)①∵DF=DG,
∴∠DGF=∠DFG,
∵∠BGH=∠DGF,
∴∠DGF=∠DFG=∠BGH,
∵∠DBF+∠DFB=90°,∠FBC+∠BGH=90°,
∴∠DBF=∠FBC,
∴BE平分∠ABC ;
②∵△ADC≌△FDB,
∴BF=AC,
∵∠DBF=∠FBC,BE=BE,∠AEB=∠BEC=90°,
∴△ABE≌△CBE(ASA)
∴AE=CE,
∴AE=EC=AC,
∴CE=BF.
练习册系列答案
相关题目