题目内容

【题目】平行四边形ABCD在平面直角坐标系中的位置如图所示,其中A(﹣4,0),B(2,0),C(3,3)反比例函数的图象经过点C.

(1)求此反比例函数的解析式;

(2)将平行四边形ABCD沿x轴翻折得到平行四边形AD′C′B,请你通过计算说明点D′在双曲线上;

(3)请你画出AD′C,并求出它的面积.

【答案】解:(1)点C(3,3)在反比例函数的图象上,m=9。

反比例函数的解析式为

(2)过C作CEx轴于点E,过D作DFx轴于点F,则CBE≌△DAF,

AF=BE,DF=CE

A(﹣4,0),B(2,0),C(3,3),

DF=CE=3,OA=4,OE=3,OB=2

D(﹣3,3)

点D′与点D关于x轴对称,D′(﹣3,﹣3)

把x=﹣3代入得,y=﹣3,点D′在双曲线上

(3)作图如下:

C(3,3),D′(﹣3,﹣3),点C和点D′关于原点O中心对称

D′O=CO=D′C

SAD′C=2SAOC=2×AOCE=2××4×3=12

【解析】

试题(1)把点C(3,3)代入反比例函数,求出m,即可求出解析式

(2)过C作CEx轴于点E,过D作DFx轴于点F,则CBE≌△DAF,根据线段之间的数量关系进一步求出点D的坐标,再点D′与点D关于x轴对称,求出D′坐标,进而判断点D′是不是在双曲线

(3)根据C(3,3),D′(﹣3,﹣3)得到点C和点D′关于原点O中心对称,进一步得出D′O=CO=D′C,由SAD′C=2SAOC=2×AOCE求出面积的值

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网