题目内容

抛物线y=ax2+bx+c与x轴的公共点是(-1,0),(3,0),则这条抛物线的对称轴是直线


  1. A.
    直线x=-1
  2. B.
    直线x=0
  3. C.
    直线x=1
  4. D.
    直线x=3
C
分析:因为点A和B的纵坐标都为0,所以可判定A,B是一对对称点,把两点的横坐标代入公式x=求解即可.
解答:∵抛物线与x轴的交点为(-1,0),(3,0),
∴两交点关于抛物线的对称轴对称,
则此抛物线的对称轴是直线x==1.
故选C.
点评:本题考查了抛物线与x轴的交点,以及如何求二次函数的对称轴,对于此类题目可以用公式法也可以将函数化为顶点式来求解,也可以用公式x=求解,即抛物线y=ax2+bx+c与x轴的交点是(x1,0),(x2,0),则抛物线的对称轴为直线x=
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网