题目内容

【题目】如图,已知矩形ABCD,点EAD上一点,BE ACF点.

(1)若AE=AD,△AEF的面积为1时,求△ABC的面积;

(2)若AD = 4tanEAF =,求AF的长;

(3)若tanEAF =,连接DF,证明DF=AB

【答案】(1)12;(2);(3)见解析.

【解析】分析:证明三角形相似,根据相似三角形的面积比等于相似比的平方即可求出.

利用正切得到 AB = DC = 2,tanABF = ,即BF=2AF,用勾股定理即可求出的长.

EAF =ABFtanEAF =,可以得到,可以推出EAD中点

延长BECD交于点G,易证ABE DGE,即可证明.

详解:(1)∵四边形ABCD是矩形

AD = BC,

,

SAEF = 1,

SCBF = 9SAEF = 9,SABF = 3SAEF = 3,

SABC = SABF + SCBF = 12.

(2)AD = 4,tanEAF =,

AB = DC = 2,

∵∠EAF + BAF = 90°,BAF + ABF = 90° ,

∴∠EAF = ABF,

tanABF = ,即BF=2AF,

AF2 + BF2 = AB2,

AF =.

(3)∵∠EAF =ABFtanEAF =,

,

,

,

EAD中点,

延长BECD交于点G,

易证ABE DGE,

DG = AB = DC,

DF = DC.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网