题目内容
【题目】已知直线.
(1)如下图,点在直线的左侧,请写出,,之间的数量关系,并说明理由:
(2)如下图,当点在线段上时,分别平分,,此时的度数为_________°
(3)如下图,当点在直线的左侧时,分别平分,,请直接写出和的数量关系 ;
(4)如下图,当点在直线的右侧时,分别平分,,请直接写出和的数量关系 ;
【答案】(1)∠ABE+∠CDE=∠BED,理由见解析;(2)90;(3)∠BFD=∠BED;(4)2∠BFD+∠BED=360°
【解析】
(1)首先作EF∥AB,根据直线AB∥CD,可得EF∥CD,所以∠ABE=∠1,∠CDE=∠2,据此推得∠ABE+∠CDE=∠BED即可.
(2)作GF∥AB,根据∠ABD+∠CDB=180°,分别平分,,得到∠BFD=∠BFG+∠DFG=∠ABF+∠CDF=(∠ABD+∠CDB)=90°;
(3)首先根据BF,DF分别平分∠ABE,∠CDE,推得∠ABF+∠CDF=(∠ABE+∠CDE);然后由(1),可得∠BFD=∠ABF+∠CDF,∠BED=∠ABE+∠CDE,据此推得∠BFD=∠BED.
(4)首先过点E作EG∥CD,再根据AB∥CD,EG∥CD,推得AB∥CD∥EG,所以∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,据此推得∠ABE+∠CDE+∠BED=360°;然后根据∠BFD=∠ABF+∠CDF,以及BF,DF分别平分∠ABE,∠CDE,推得2∠BFD+∠BED=360°即可.
(1)∠ABE+∠CDE=∠BED.
理由:如图1,作EF∥AB,
∵AB∥CD,
∴EF∥CD,
∴∠ABE=∠1,∠CDE=∠2,
∴∠ABE+∠CDE=∠1+∠2=∠BED,
即∠ABE+∠CDE=∠BED.
故答案为:∠ABE+∠CDE=∠BED;
(2)如图,作GF∥AB,
∴AB∥GF∥CD
∴∠ABD+∠CDB=180°,∠BFG=∠ABF,∠DFG=∠CDF
∵分别平分,,
∴∠BFD=∠BFG+∠DFG=∠ABF+∠CDF=∠ABD +∠CDB =(∠ABD+∠CDB)=90°,
故答案为:90;
(3)∠BFD=∠BED.
理由:如图
∵BF,DF分别平分∠ABE,∠CDE,
∴∠ABF=∠ABE,∠CDF=∠CDE,
∴∠ABF+∠CDF=∠ABE+∠CDE=(∠ABE+∠CDE),
由(1)可得∠BFD=∠ABF+∠CDF=(∠ABE+∠CDE)
又∠BED=∠ABE+∠CDE,
∴∠BFD=∠BED.
(4)2∠BFD+∠BED=360°.
理由:如图3,过点E作EG∥CD,
∵AB∥CD,EG∥CD,
∴AB∥CD∥EG,
∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,
∴∠ABE+∠CDE+∠BED=360°,
由(1)知,∠BFD=∠ABF+∠CDF,
又∵BF,DF分别平分∠ABE,∠CDE,
∴∠ABF=∠ABE,∠CDF=∠CDE,
∴∠BFD=(∠ABE+∠CDE),
∴2∠BFD+∠BED=360°.
故答案为:2∠BFD+∠BED=360°.