题目内容
【题目】如图,灯杆AB与墙MN的距离为18米,小丽在离灯杆(底部)9米的D处测得其影长DE为3m,设小丽身高为1.6m.
(1)求灯杆AB的高度;
(2)小丽再向墙走7米,她的影子能否完全落在地面上?若能,求此时的影长;若不能,求落在墙上的影长.
【答案】(1)6.4米;(2)不能完全落在地面上,落在墙上的影长为1米
【解析】试题分析:(1)由相似三角形对应成比例即可求出AB的长.
(2)假设全部在地上,设影长为x,同样求出影长x,而9+7+影长>18.故有部分影子落在墙上.超过的影长,相当于墙上影长在地上的投影,设落在墙上的影长为y,则有y:6.4=:(+18),求出y的值即可.
试题解析:解:(1)∵AB∥CD,∴△CDE∽△ABE,∴CD:AB=DE:BE,∴1.6:AB=3:12,解得:AB=6.4.
答:灯杆AB的高度为6.4米.
(2)假设全部在地上,设影长为x,则CD:AB=DE:BE,∴1.6:6.4=x:(9+7+x),解得:x=,而9+7+-18=>0.故有部分影子落在墙上.
因为超过的影长为,相当于墙上影长在地上的投影,故设落在墙上的影长为y,则有y:6.4=:(+18),解得:y=1.故落在墙上的影子长为1米.
练习册系列答案
相关题目