题目内容

【题目】如图,在ABC中,A=36°,AB=AC,CD、BE分别是∠ACB,∠ABC的平分线,CD、BE相交于F点,连接DE,则图中全等的三角形有多少组(  )

A. 3 B. 4 C. 5 D. 6

【答案】D

【解析】

首先根据已知条件,看能得出哪些边和角相等,然后再根据全等三角形的判定方法来判断有多少对全等三角形.

AB=AC,A=36°,

∴∠ABC=ACB=72°;

CD、BE分别平分∠ABC、ACB,

∴∠ABE=ACD=EBC=DCB=36°;

又∵AB=AC,A=A;

∴△ABE≌△ACD;(ASA)

BE=CD;

又∵BC=BC,DCB=EBC=36°,

∴△DBC≌△ECB;(SAS)

DEBC,

∴∠EDF=DEF=36°,

又∵∠DBE=ECD=36°,DE=DE,

∴△DEB≌△EDC;(AAS)

由②得:DB=EC,BDC=CEB;

又∵∠DFB=EFC,

∴△BFD≌△CFE.(AAS)

∵△ABC中,∠A=36°,AB=AC,

∴∠ABC=ACB==72°,

BE是∠ABC的平分线,CD是∠ACB的平分线,

∴∠EBC=DBE=36°,

∵∠ACB=72°,

BE=BC,

BCDE,

∴∠DEB=EBC=36°,

∴△BCF≌△BED,

同理可得,BCF≌△DCE.

所以本题的全等三角形共6组;

故选D.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网