题目内容
【题目】已知:如图,在△ABC中,∠C=90°,AE是△ABC的角平分线;ED平分∠AEB,交AB于点D;∠CAE=∠B.
(1)求∠B的度数.
(2)如果AC=3cm,求AB的长度.
(3)猜想:ED与AB的位置关系,并证明你的猜想.
【答案】
(1)解:∵AE是△ABC的角平分线,
∴∠CAE=∠EAB,
∵∠CAE=∠B,
∴∠CAE=∠EAB=∠B.
∵在△ABC中,∠C=90°,
∴∠CAE+∠EAB+∠B=3∠B=90°,
∴∠B=30°
(2)解:∵在△ABC中,∠C=90°,∠B=30°,AC=3cm,
∴AB=2AC=6cm
(3)解:猜想:ED⊥AB.理由如下:
∵∠EAB=∠B,
∴EB=EA,
∵ED平分∠AEB,
∴ED⊥AB
【解析】(1)先由角平分线的定义及已知条件得出∠CAE=∠EAB=∠B,再根据直角三角形两锐角互余得出∠CAE+∠EAB+∠B=3∠B=90°,那么∠B=30°;(2)根据30°角所对的直角边等于斜边的一半得出AB=2AC=6cm;(3)先由∠EAB=∠B,根据等角对等边得出EB=EA,又ED平分∠AEB,根据等腰三角形三线合一的性质得到ED⊥AB.
练习册系列答案
相关题目