题目内容
【题目】平面直角坐标系中,四边形OABC是正方形,点A,C 在坐标轴上,点B(,),P是射线OB上一点,将绕点A顺时针旋转90°,得,Q是点P旋转后的对应点.
(1)如图(1)当OP = 时,求点Q的坐标;
(2)如图(2),设点P(,)(),的面积为S. 求S与的函数关系式,并写出当S取最小值时,点P的坐标;
(3)当BP+BQ = 时,求点Q的坐标(直接写出结果即可)
【答案】(1);(2),;(3).
【解析】
(1)先根据正方形的性质、解直角三角形可得,,再根据三角形全等的判定定理与性质可得,从而可得,由此即可得出答案;
(2)先根据正方形的性质得出,,再根据旋转的性质、勾股定理可得,,然后根据直角三角形的面积公式可得S与x的函数关系式,最后利用二次函数的解析式即可得点P的坐标;
(3)先根据旋转的性质、正方形的性质得出,,从而得出点P在OB的延长线上,再根据线段的和差可得,然后同(1)的方法可得,,最后根据三角形全等的性质、线段的和差可得,由此即可得出答案.
(1)如图1,过P点作轴于点G,过Q点作轴于点H
∵四边形OABC是正方形
∴
∵
∴
在中,,
∴
∵绕点A顺时针旋转得到
∴,
在和中,
∴
∴
∴
则点Q的坐标为;
(2)如图2,过P点作轴于点G
∵绕点A顺时针旋转得到
∴
∵
∴,
∴
在中,由勾股定理得:
整理得:
∴
整理得:
由二次函数的性质可知,当时,S随x的增大而减小;当时,S随x的增大而增大
则当时,S取得最小值,最小值为9
此时
故点P的坐标为;
(3)∵绕点A顺时针旋转得到
∴
∵
∴
∵四边形OABC是正方形,且边长
对角线
∴点P在OB的延长线上
∴
解得
如图3,过P点作轴于点G,过Q点作轴于点H
同(1)可得:,
,
则点Q的坐标为.
练习册系列答案
相关题目