题目内容
【题目】在新冠疫情防控期间,某医疗器械商业集团新进了40台A型电子体温测量仪,60台B型电子体温测量仪,计划调配给下属的甲、乙两个连锁店销售,其中70台给甲连锁店,30台给乙连锁店.两个连锁店销售这两种测量仪每台的利润(元)如下表:
A型 | B型 | |
甲连锁店 | 200 | 170 |
乙连锁店 | 160 | 150 |
设集团调配给甲连锁店台A型测量仪,集团卖出这100台测量仪的总利润为(元).
(1)求关于的函数关系式,并求出的取值范围:
(2)为了促销,集团决定仅对甲连锁店的A型测量仪每台让利元销售,其他的销售利润不变,并且让利后每台A型测量仪的利润仍然高于甲连锁店销售的每台B型测量仪的利润,问该集团应该如何设计调配方案,使总利润达到最大?
【答案】(1)(10≤≤40);(2)当0<<20时,调配给甲连锁店A型40台,B型30台,乙连锁店A型 0台,B型30台;当=20时,所有方案利润相同; 当20<<30时,调配给甲连锁店A型10台,B型60台,乙连锁店A型 30台,B型0台
【解析】
(1)首先设调配给甲连锁店台A型测量仪,则调配给甲连锁店B型测温仪台,调配给乙连锁店A型测温仪台,B型台,根据题意列出函数关系式,列出不等式组求出的取值范围即可;
(2)依题意得出y与a的关系式,解出不等式方程后可得出使利润达到最大的分配方案.
解:(1)根据题意知,调配给甲连锁店B型测温仪台,调配给乙连锁店A型测温仪台,B型即台,
.
即.
∵,
∴10≤≤40.
∴(10≤≤40);
(2)由题意知,
即.
∵>170,
∴<30,
当0<<20时,当=40时,总利润达到最大,即调配给甲连锁店A型40台,B型30台,乙连锁店A型 0台,B型30台;
当=20时,的取值在10≤≤40内时所有方案利润相同;
当20<<30时,当=10时,总利润达到最大,即调配给甲连锁店A型10台,B型60台,乙连锁店A型 30台,B型0台.
【题目】我市某初中课外兴趣活动小组对某水稻品种的稻穗谷粒数目进行调查,从试验田中随机抽取了30株,得到的数据如下(单位:颗):
182 | 195 | 201 | 179 | 208 | 204 | 186 | 192 | 210 | 204 |
175 | 193 | 200 | 203 | 188 | 197 | 212 | 207 | 185 | 206 |
188 | 186 | 198 | 202 | 221 | 199 | 219 | 208 | 187 | 224 |
(1)对抽取的30株水稻稻穗谷粒数进行统计分析,请补全下表中空格,并完善直方图:
谷粒颗数 | 175≤x<185 | 185≤x<195 | 195≤x<205 | 205≤x<215 | 215≤x<225 |
频数 | 8 | 10 | 3 | ||
对应扇形 图中区域 | D | E | C |
(2)如图所示的扇形统计图中,扇形A对应的圆心角为 度,扇形B对应的圆心角为 度;
(3)该试验田中大约有3000株水稻,据此估计,其中稻穗谷粒数大于或等于205颗的水稻有多少株?
【题目】已知二次函数的与的部分对应值如表:
下列结论:抛物线的开口向上;②抛物线的对称轴为直线;③当时,;④抛物线与轴的两个交点间的距离是;⑤若是抛物线上两点,则,其中正确的个数是( )
A.B.C.D.