题目内容
如图,点A1,A2,A3,A4,…,An在射线OA上,点B1,B2,B3,…,Bn―1在射线OB上,且A1B1∥A2B2∥A3B3∥…∥An﹣1Bn﹣1,A2B1∥A3B2∥A4B3∥…∥AnBn﹣1,△A1A2B1,△A2A3B2,…,△An﹣1AnBn﹣1为阴影三角形,若△A2B1B2,△A3B2B3的面积分别为1、4,则△A1A2B1的面积为__________;面积小于2014的阴影三角形共有__________个.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408230327530404219.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408230327530404219.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823032753040338.png)
试题分析:根据面积比等于相似比的平方,可得出
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823032753056764.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823032753072788.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823032753087947.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823032753103971.png)
试题解析:由题意得,△A2B1B2∽△A3B2B3,
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408230327531181267.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408230327531341258.png)
又∵A1B1∥A2B2∥A3B3,
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408230327531501088.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823032753103971.png)
∴OA1=A1A2,B1B2=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823032753040338.png)
继而可得出规律:A1A2=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823032753040338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823032753212303.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823032753040338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823032753212303.png)
又△A2B1B2,△A3B2B3的面积分别为1、4,
∴S△A1B1A2=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823032753040338.png)
故可得小于2014的阴影三角形的有:△A1B1A2,△A2B2A3,△A3B3A4,△A4B4A5,△A5B5A6,△A6B6A7,共6个.
考点: 1.相似三角形的判定与性质;2.平行线的性质;3.三角形的面积.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目