题目内容

【题目】如图,⊙O的半径为17cm,弦AB∥CD,AB=30cm,CD=16cm,圆心O位于AB,CD的上方,求AB和CD的距离.

【答案】解:过点O作弦AB的垂线,垂足为E,延长OE交CD于点F,连接OA,OC, ∵AB∥CD,
∴OF⊥CD,
∵AB=30cm,CD=16cm,
∴AE= AB= ×30=15cm,CF= CD= ×16=8cm,
在Rt△AOE中,
OE= = =8cm,
在Rt△OCF中,
OF= = =15cm,
∴EF=OF﹣OE=15﹣8=7cm.
答:AB和CD的距离为7cm.

【解析】过点O作弦AB的垂线,垂足为E,延长AE交CD于点F,连接OA,OC;由于AB∥CD,则OF⊥CD,EF即为AB、CD间的距离;由垂径定理,易求得AE、CF的长,在构建的直角三角形中,根据勾股定理即可求出OE、OF的长,也就求出了EF的长,即弦AB、CD间的距离.
【考点精析】解答此题的关键在于理解勾股定理的概念的相关知识,掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2,以及对垂径定理的理解,了解垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网