题目内容
【题目】如图,已知⊙O的半径为2,AB为直径,CD为弦.AB与CD交于点M,将 沿CD翻折后,点A与圆心O重合,延长OA至P,使AP=OA,连接PC
(1)求CD的长;
(2)求证:PC是⊙O的切线;
(3)点G为 的中点,在PC延长线上有一动点Q,连接QG交AB于点E.交 于点F(F与B、C不重合).问GEGF是否为定值?如果是,求出该定值;如果不是,请说明理由.
【答案】(1)2;(2)见解析;(3)见解析.
【解析】试题(1)连接OC,根据翻折的性质求出OM,CD⊥OA,再利用勾股定理列式求解即可;
(2)利用勾股定理列式求出PC,然后利用勾股定理逆定理求出∠PCO=90°,再根据圆的切线的定义证明即可;
(3)连接GA、AF、GB,根据等弧所对的圆周角相等可得∠BAG=∠AFG,然后根据两组角对应相等两三角相似求出△AGE和△FGA相似,根据相似三角形对应边成比例可得,从而得到GEGF=,再根据等腰直角三角形的性质求解即可.
试题解析:(1)解:如图,连接OC,∵沿CD翻折后,点A与圆心O重合,∴OM=OA=×2=1,CD⊥OA,∵OC=2,∴CD=2CM===;
(2)证明:∵PA=OA=2,AM=OM=1,CM=CD=,∠CMP=∠OMC=90°,∴PC===,∵OC=2,PO=2+2=4,∴==16=,∴∠PCO=90°,∴PC是⊙O的切线;
(3)解:GEGF是定值,证明如下:
如图,连接GA、AF、GB,∵点G为的中点,∴,∴∠BAG=∠AFG,又∵∠AGE=∠FGA,∴△AGE∽△FGA,∴,∴GEGF=,∵AB为直径,AB=4,∴∠BAG=∠ABG=45°,∴AG=,∴GEGF=8.
【题目】2019年10月18日至27日(共10天)武汉军运会期间,从19日起武汉体育中心9天中接收观众人数的变化情况如下表(正数表示比前一天多的人数,负数表示经前一天少的人数):
日期 | 19日 | 20日 | 21日 | 2日 | 23日 | 24日 | 25日 | 26日 | 27日 |
人数变化/万人 | +0.5 | +0.7 | +0.8 | -0.4 | -0.6 | +0.2 | +0.3 | +0.5 | +0.2 |
(1)请判断这9天中,游客人数最多和最少的各是哪一天?它们相差多少万人?
(2)如果10月18日观众人数为2万人,平均每人门票100元,请问武汉体育中心在军运会这10天期间门票总收入为多少万元?