ÌâÄ¿ÄÚÈÝ
¡¾ÌâÄ¿¡¿ ÎÒÃÇÖªµÀijЩ´úÊýºãµÈʽ¿ÉÓÃһЩ¿¨Æ¬Æ´³ÉµÄͼÐÎÃæ»ýÀ´½âÊÍ£¬ÀýÈ磺ͼA¿ÉÒÔÓÃÀ´½âÊÍ£¬Êµ¼ÊÉÏÀûÓÃһЩ¿¨Æ¬Æ´³ÉµÄͼÐÎÃæ»ýÒ²¿ÉÒÔ¶ÔijЩ¶þ´ÎÈýÏîʽ½øÐÐÒòʽ·Ö½â.
£¨1£©Í¼B¿ÉÒÔ½âÊ͵ĴúÊýºãµÈʽÊÇ £»
£¨2£©ÏÖÓÐ×ã¹»¶àµÄÕý·½Ðκ;ØÐο¨Æ¬£¬ÈçͼC£º
¢ÙÈôҪƴ³öÒ»¸öÃæ»ýΪ£¨3a+b£©£¨a+2b£©µÄ¾ØÐΣ¬ÔòÐèÒª1ºÅ¿¨Æ¬ ÕÅ£¬2ºÅ¿¨Æ¬ ÕÅ£¬3ºÅ¿¨Æ¬ ÕÅ£»
¢ÚÊÔ»³öÒ»¸öÓÃÈô¸ÉÕÅ1ºÅ¿¨Æ¬¡¢2ºÅ¿¨Æ¬ºÍ3ºÅ¿¨Æ¬Æ´³ÉµÄ¾ØÐΣ¬Ê¹¸Ã¾ØÐεÄÃæ»ýΪ6a2+7ab+2b2£¬²¢ÀûÓÃÄ㻵ÄͼÐÎÃæ»ý¶Ô6a2+7ab+2b2½øÐÐÒòʽ·Ö½â.
¡¾´ð°¸¡¿£¨1£©£¨2n£©2=4n2»ò2n¡¤2n=4n2£»£¨2£©¢Ù 3£¬2 ,7£»¢Ú 6a2+7ab+2b2=£¨2a+b£©£¨3a+2b£©£¬Í¼¼û½âÎö
¡¾½âÎö¡¿
£¨1£©¸ù¾ÝÕý·½ÐεÄÃæ»ýÇó³ö½á¹û¼´¿É½â¾ö£»
£¨2£©¢ÙÇó³ö£¨3a+b£©£¨a+2b£©µÄÖµ£¬¼´¿ÉµÃ³ö´ð°¸£»
¢Ú¸ù¾ÝÌâÒâÏÈÅжϳöÐèÒª·Ö±ðÐèÒª¼¸¿é1ºÅ¡¢2ºÅ¡¢3ºÅµÄͼÐΣ¬È»ºóÆ´°Ú»³öͼÐΣ¬¼´¿ÉµÃ³ö´ð°¸£¬¸ù¾ÝͼÐκ;ØÐÎÃæ»ý¹«Ê½Çó³ö¼´¿É.
½â£º¢Å(2n)2=4n2»ò2n¡¤2n=4n2
¢Æ¢Ù£¬¹ÊÐèÒª1ºÅ¿¨Æ¬3ÕÅ£¬2ºÅ¿¨Æ¬2ÕÅ£¬3ºÅ¿¨Æ¬7ÕÅ£»
¢Ú¸ù¾ÝÌâÒ⣬ÐèÒª6¿é1ºÅͼÐΣ¬ÐèÒª2¿é2ºÅͼÐΣ¬ÐèÒª7¿é3ºÅͼÐΣ¬½øÐÐÆ´°Ú£¬ÈçÏÂͼÊÇÒ»¸öÁ½±ß³¤·Ö±ðΪ£¨2a+b£©ºÍ£¨3a+2b£©µÄ³¤·½ÐΣ»
6a2+7ab+2b2=£¨2a+b£©£¨3a+2b£©